

Oxide thin films processing:

some examples on how to take advantage of perovskite properties into devices

Workshop OSEPI Villa Clythia - Fréjus du 13 au 17 mai 2024

G. Agnus T. Maroutian, S. Matzen, P. Aubert, F. Pesty, Ph. Lecoeur

- Motivations & approaches
- Focus on MEMS devices
- Material review for Si integration

2. <u>Thermal based devices</u>

- Bolometer
- Pressure sensor
- Thermoelectricity

•• CN2

UNIVERSITY OF TWENTE.

GREYC

C2N

3. <u>Strain based devices</u>

- Focus on the link magnetism/strain
- Results on magnetic field sensing
- Flexoelectricity

Conclusion & discussion

1. <u>Patterning perovskites into devices</u>

- Motivations & approaches
- Focus on MEMS devices
- Material review for Si integration

2. <u>Thermal based devices</u>

- Bolometer
- Pressure sensor
- Thermoelectricity

UNIVERSITY OF TWENTE.

GREYC

•• CN2

C2N

3. <u>Strain based devices</u>

- Focus on the link magnetism/strain
- Results on magnetic field sensing
- Flexoelectricity

Conclusion & discussion

Perovskite oxides structure

Growth and structural properties

C2N

SEM

22/05/2024 UNIVERSITE PARIS-SACLAY

Perovskite oxides processing

22/05/2024

Perovskite oxides processing

A critical step => etching

- Large Young Modulus •
- High chemical stability •

C2N

7

Exalted amplitude of physical effects

5/22/24

PARIS-SACI

Perovskite oxides MEMS

2009 ADVANCED MATERIALS

All-Oxide Crystalline Microelectromechanical Systems: Bending the Functionalities of Transition-Metal Oxide Thin Films

By Luca Pellegrino,* Michele Biasotti, Emilio Bellingeri, Cristina Bernini, Antonio Sergio Siri, and Daniele Marré

180

¢ /Deg

200

Temperature/ K

270

 $\Delta T_c = 23K$

-- LSMO on MEMS -- LSMO on Sub

250

90

150

cps

100

1.2

1.0-0.8

0

100

R/R_{Tc} 0.6 04

Full oxide approach

b) Patterning the supporting layer

STO substrate

360

300

- c) Removal of the sacrificial layer

Consiglio Nazionale

delle Ricerche

SPIN

d) Functional layer deposition

Pros:

- High quality films
- Low complexity of the freestanding stack •

Cons:

PLD on freestanding (fragile) substrate ٠

Opens for films transfer of perovskites (requirement of wafer scale deposition technique !)

www.advmat.d

Perovskite oxides MEMS

Integration on Si(100) : Material review

J. W. Reiner et al., *Adv. Mater.* **2010**, *22*, 2919

Direct integration of SrTiO₃ (STO) by molecular beam epitaxy

R. McKee et al., Phys. Rev. Lett. 1998, 81, 3014

Strategy :

Focus on STO/Si

- 1. Removing the amorphous silicate layer
- 2. Deposition of a thin poorly crystallized layer of STO that act as oxygen barrier
- 3. Deposition of $SrTiO_3$ at high temperature/oxygen pressure

1.7% of lattice mismatch with Si (cell rotation of 45°)

Growth manage by a few groups in the worl:

Etats-Unis:		
C.B. Eom (<i>Wisconsin</i>)		
D. Schlom (<i>Cornell</i>)		
Yale, Texas Univ.		

.

Europe: G. Saint Girons (*INL, France*) J. Fompeyrine (*IBM Zurich, Suisse*) ...

STO <u>5 nm</u> Si(001)

SrTiO₂

a_{sto} = 3,926 Å

G. Niu et al., Appl. Phys. Lett. 2009, 95, 2009

Critical steps

...

- preventing the interfacial silicate layer during the growth at high temperature/ oxygen pressure
- Stichometry difficult to control (Oxygen, Sr/Ti ratio)

11

STO/Si: TEM analysis

Coherent relationship between silicon and SrTiO₃

STEM @ Saragosse

- Different contrasts between interfacial SrTiO₃ (10's of cells)) et the top SrTiO₃
- Several types of defects with different sizes

Complex structure

Changes induces by the PLD growth of active films

Homogeneity

- Growth of an interfacial SiO₂ layer
- Modification of the crystallinity of SrTiO₃?
- Strain?

Manganites on STO/Si

Epitaxy of manganites: La_{0.67}Sr_{0.33}MnO₃

	STO	LSMO
a // plan	3,925	3,925
c ⊥ plan	3,89	3,84
bulk	3,905	3,866

- Interfacial SiO₂ layer
- **STO relaxed** with respect to Si 110 (3,839 Å)
- Coherent epitaxy between LSMO and STO
- LSMO under tensile strain => no relaxation
- STO under tensile strain in plane
 Stoichiometry

Strain in perovskites on Si

High level of stress in those epitaxial thin films

- Octahedral tilting
- Cation displacement
- Octahedral distortio
 (Jahn-Teller)

C2N

Strain in perovskites on Si

Deneke et al. Nanoscale Research Letters 2011, 6:621 http://www.nanoscalereslett.com/content/6/1/621 Nanoscale Research Letters a SpringerOpen Journal

NANO EXPRESS

Open Access

Rolled-up tubes and cantilevers by releasing SrRuO₃-Pr_{0.7}Ca_{0.3}MnO₃ nanomembranes

Christoph Deneke^{1,2*}, Elisabeth Wild², Ksenia Boldyreva³, Stefan Baunack², Peter Cendula², Ingolf Mönch², Markus Simon⁴, Angelo Malachias⁵, Kathrin Dörr³⁶ and Oliver G Schmidt²

- ➡ ouvertures par IBE
- ➡ Attaque chimique humide sélective du PrCaMnO₃ avec la solution (HF/HNO₃/H₂O)

Volonté d'utiliser cette relaxation de contrainte @ UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

nicrotubes obtained from <100> -oriented trenches defined by optical lithography. The tubes in (b) exhibit an aspect ratio of nearly 1:700.

1. <u>Patterning perovskites into devices</u>

- Motivations & approaches
- Focus on MEMS devices
- Material review for Si integration

- Bolometer
- Pressure sensor
- Thermoelectricity

GREYC • Therr

•• CN2

3. <u>Strain based devices</u>

- Focus on the link magnetism/strain
- Results on magnetic field sensing
- Flexoelectricity

Conclusion & discussion

C2N

C2N

UNIVERSITY OF TWENTE.

Thermal based devices

<u>Main idea</u>: generate heat and measure it through TCR

The way you generate/lose heat makes your sensor

Air =>

Photon => Bolometer

- Pressure sensor
- Gas flow sensor
- Accelerometer

5/22/24

PARIS-SACLA

2 families of oxides materials

 $TCR = \frac{1}{R(T)} \frac{dR(T)}{dT}$

17

Thermal based devices

 $TCR = \frac{1}{R(T)} \frac{dR(T)}{dT}$

<u>Main idea</u>: generate heat and measure it through TCR

The way you generate/lose heat makes your sensor

Air =>

Photon => Bolometer

- Pressure sensor
- Gas flow sensor
- Accelerometer

5/22/24

PARIS-SACL

2 families of oxides materials

Thermal based devices: free-standing bolometer

Simplified thermal model :

Thin film (R, n)

at $T=T_0+\Delta T$

temperature T_o

Radiation ΛP

$$S_V(\omega) = \frac{\eta \times R \times I}{G(1+jw\tau)} \times \frac{1}{R} \frac{dR}{dT}$$

For fast and sensitive bolometer, one need:

- High TCR material
- Superconductors YBCO close to the supra-métal
- Manganites LSMO à la transition métal-isolant
- des membranes pour réduire la conductance thermique G et le temps de réponse t = C/G

Suspended epitaxial YBaCuO microbolometers fabricated by silicon micromachining: Modeling and measurements

Laurence Méchin^{a)} and Jean-Claude Villégier DRFMC/SPSMS/LCP-CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France

Daniel Bloyet GREYC (URA CNRS 1526)-ISMRA, 6 boulevard Maréchal Juin, 14050 Caen cedex, France

La_{0.7}Sr_{0.3}MnO₃ suspended microbridges for uncooled bolometers made using reactive ion etching of the silicon substrates

S. Liu^a, B. Guillet^a, A. Aryan^a, C. Adamo^b, C. Fur^a, J.-M. Routoure^a, F. Lemarié^c, D.G. Schlom^{b,d}, L. Méchin^{a,*}

> S. Liu et al. Microelec. Eng. (2012) S. Liu, thèse univ. Caen (2013)

Thermal based devices: free-standing bolometer

Free-standing bolometers La_{0.7}Sr_{0.3}MnO₃ (LSMO)

LSMO/YSZ-based buffered Si par PLD

20

LSMO/STO-CTO/Si par MBE puis PLD

Thermal based devices: free-standing pressure gauge

D. Le Bourdais PhD

D. Le Bourdais et al., *J. Appl. Phys.* **2015**, *118*, 124509

Pressure of sensitivity: Thermal dissipation Bridge temperature: depends on P

High pressure: Maximal thermal dissipation Lowest bridge temperature

d

Thermal based devices: free-standing pressure gauge

D. Le Bourdais et al., *J. Appl. Phys.* **2015**, *118*, 124509

Power consumption reduced by <u>3 orders</u> <u>of magnitude</u>

- Manganites chemical stability
- Low intrinsic noise

A. Lisauskas et al., Appl. Phys. Lett. **77**, 756 (2000)

Thermal based devices: other sensors?

Flux sensor

Accelerometer

Thermal based devices: probing other properties

Thermoelectricity

=> Superlattices SrTO₃/Nb:SrTiO₃ for Si integrated thermoelectrcity

Thèse Yann Apertet (2013)

Critical point => managing strain relaxation during the release

C2N

- Motivations & approaches
- Focus on MEMS devices
- Material review for Si integration

2. <u>Thermal based devices</u>

- Bolometer
- Pressure sensor
- Thermoelectricity

Conclusion & discussion

C2N

C2N

GREYC

Strain based devices

<u>Main idea</u>: Additional degree of freedom thanks to substrate realease of piezoelectric films

For perpendicular geometry:

$$\frac{\Delta l}{l} = d_{33}^{eff} \cdot \Delta V$$

 ${\rm S}_{\rm ij}$ are the elastic compliances of the film at constant electric field

υ

v : Poisson's ratio of the substrate

Y : Young's modulus of the substrate

K. Lefki and G.M. Dormans, J. Appl. Phys. 76, 1764 (1994)

Freestanding devices => release of substrate clamping

 $d_{33}^{eff} = d_{33}$

Extrinsic Magnetoelectric effect (ME): coupled magnetic and electrical phenomenon via elastic interaction

Focus on the link magnetism/strain

Concerned materials:

=> Strong link between selected materials and desired device application

Piezoelectric layers: PbZrTiO₃ (PZT) or PbMgNbO₃-PbTiO₃ (PMN-PT) (large piezoelectric response) BaTiO₃ (using domain engineering; c to c/a2 multi-domain state S. Geprägs PRB 88 (2013))

PARIS-SACLAY

PARIS-SACLAY

Magnetoelectric sensors

N. Nguyen PhD 2018

S. Hem PhD 2023

22/05/2024

PARIS-SACLAY

Magnetoelectric sensors

N. Nguyen PhD 2018

S. Hem PhD 2023

> Dynamic response – Methods of study

Q-factor: 64 @ Athmosphere 1000 @ 1 mbar

Optimizing sensitivity => optimize material quality

RESEARCH ARTICLE

Stress Analysis and Q-Factor of Free-Standing (La,Sr)MnO₃ Oxide Resonators

Nicola Manca, Federico Remaggi, Alejandro E. Plaza, Lucia Varbaro, Cristina Bernini, Luca Pellegrino,* and Daniele Marré

Higher cristalline quality => Higher quality factor

Optimizing sensitivity => optimize material quality

Strain, Young's modulus, and structural transition of EuTiO₃ thin films probed by micro-mechanical methods

Cite as: APL Mater. 11, 101107 (2023); doi: 10.1063/5.0166762 Submitted: 7 July 2023 · Accepted: 18 September 2023 · Published Online: 6 October 2023 Nicola Manca.^{1,a} © Caia Tarsi,² © Alexei Kalaboukhov,³ © Francesco Bisio,¹ © Federico Caglieris,¹ © Floriana Lombardi.³ © Daniele Marté.^{1,2} © and Luca Pellegrino' ©

Single phase multiferroic EuTiO3

Opens for higher sensitivity

Other strain based devices

Inkjet Pinting

<u>G. Rjinders</u>, *Epitaxial PZT films for MEMS printing applications MRS Bulletin 37 1030 (2012)*

UNIVERSITY OF TWENTE.

Figure 1. Principle of (a) a thermal bubble jet print head and (b) a piezoelectrically actuated inkjet print head. Thermal print heads have currently the major share in the microelectromechanical inkjet market for use in small office/home office printers, while piezoelectric print heads are an emerging product in the professional printing arena.

Figure 2. Examples (from Reference 84) of industrial printing applications of piezoelectric inkjet (left to right): printed circuit board inner layer, solar cell front side metallization, and 3D printed wheels.

- Motivations & approaches
- Focus on MEMS devices
- Material review for Si integration

2. <u>Thermal based devices</u>

- Bolometer
- Pressure sensor
- Thermoelectricity

UNIVERSITY OF TWENTE.

GREYC

•• CN2

C2N

3. <u>Strain based devices</u>

- Focus on the link magnetism/strain
- Results on magnetic field sensing
- Flexoelectricity

Conclusion & discussion

22/05/2024

38