

Hybrid CVD-MBE Er:Y₂O₃ thin films for on-chip quantum technologies

Anna Blin

A. Blin¹, A. Tallaire¹, D. Serrano¹, I. G. Balasa¹, P. Goldner¹, A. Kolar², A. Kamen², Q. Lin², X. Liu², T. Zhong²

1. IRCP, Chimie ParisTech, CNRS, PSL Research University, Paris, France.

2. Pritzker School of molecular engineering, Chicago, USA.

Workshop OSEPI - 17/05/2024

The rare-earth ions

The lanthanides– [Ln] 166 Dy 71 57 59 60 62 63 64 67 68 69 70 58 61 65 Ce Pr Sm Eu Но La Nd Pm Tb Er Tm Gd Yb Lu Europium Dysprosium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Gadolinium Terbium Holmium Erbium Thulium Ytterbium Lutetium 140 141 144 150 152 157 159 162.5 165 167 169 175 173

> Lanthanide ions $[Ln^{3+}]$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 4f^n$

- Shielding by the electron of the 5s² and 5p⁶ sublevels
- Narrow transitions, almost unaffected by the crystal environment
- Long optical and spin coherence time at low temperature

Rare earth Lanthanide ion $[Ln^{3+}]$ atomic structure

The rare-earth ions for quantum applications : quantum memories

- Businger et al., Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in ¹⁷¹Yb³⁺:Y₂SiO₅,Nat. Commun. 13, 6438 (2022)
- Askarani et al., Long-Lived Solid-State Optical Memory for High-Rate Quantum Repeaters, Phys. Rev. Lett. 127(22), 220502 (2021).
- Kutluer et al. *Time Entanglement between a Photon and a Spin Wave in a Multimode Solid-State Quantum Memory*, Phys. Rev. Lett. 123 (2019)
- Zhong et al. *Nanophotonic rare-earth quantum memory with optically controlled retrieval*, Science 357 (2015)
- Heinze et al., Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute, Phys. Rev. Lett. 111 (3), (2013)

Ouantum applications		Size	
	cm		nm
System	Bulk material (YSO)	Nano-particules (Y ₂ O ₃)	Thin films (Y ₂ O ₃)
	Monocristal	NPs (100 nm)	DLI-CVD films 200 nm on Si
	(under UV lamp)	(under UV lamp)	
RE deping	0,3 %Eu	0,3 %Eu	2 %Eu
Inhomogeneous linewidth	5 GHz	11 GHz	90 GHz
Homogeneous linewidth	600 H ₹	56 kHz	12 MHz
=	=	-	-
Optical T 3	510 µs	5,67 μs	0,027 μs
References	6: B. Flinn et al: ; <i>Phys: Rev. B</i> ; 49 ; 5821 (1994)	S. Liu et al. , <i>ACS Nano</i> , 14 , 9953–9962 (2020)	G. A. West & K. W. Beeson, <i>J. Mater.</i> <i>Res.</i> , 5 , 1573–1580 (1990)

CNTS

Thin films:

- Grown by **Direct Liquid Injection CVD**
- Possible integration : resonators, waveguides
- Research to optimize coherence properties

 $Y_2 O_3 :$

- Chemical compatibility with RE
- Binary compound
- IR transparency
- Long coherence time possible (spin and optical)

Er³⁺:

- Emission wavelength in the telecom C-band
- Paramagnetic with an electronic spin
- Substitution of Y: two possible sites C₂ and C_{3i}

Different substrates and their impact on epitaxy

- Commercially available
- Possible to remove the substrate from the film
- Direct epitaxial growth of Y₂O₃ very difficult

Oxides :

- Sapphire
- Quartz
- YSZ (Yttria Stabilized Zirconia)

 Interface more favorable for epitaxy

 Difficult substrate removal

IR Institut de Recher de Chimie

Х

MPOE

Er³⁺: Y₂O₃ on Si(100)

Results

 Er^{3+} : Y_2O_3 on MBE template

 Er^{3+} : Y_2O_3 on YSZ

Morphological properties: SEM images

Morphological properties: SEM images

ParisTech

UNIVERSITÉ

Structural properties: X-ray diffraction

Structural properties: X-ray diffraction

Optical properties

Optical properties: Photoluminescence spectra

 $\mathcal{H} = H_{IL} + H_{CC} + H_{Spin}$

H_{IL} :	Free ion Hamiltonian
H_{CC} :	Crystal field Hamiltonian
H_{Spin} :	Spin Hamiltonian

Optical properties: Photoluminescence spectra

$$\ell = H_{IL} + H_{CC} + H_{Spin}$$

UNIVERSITÉ

ParisTech

Optical properties: Photoluminescence spectra

$$\mathcal{H} = H_{IL} + H_{CC} + H_{Spin}$$

Optical properties: Photoluminescence spectra

$$\mathcal{H} = H_{IL} + H_{CC} + H_{Spin}$$

Optical properties: Photoluminescence spectra

de Recherche

de Chimie Paris

CINIS

ParisTech

Optical properties: Photoluminescence spectra

de Chimie Paris

ParisTech

Optical properties: Photoluminescence spectra

Optical properties: Decays

Optical properties: Decays

Analysis of decay **shape** and **time** gives information on RE environment

Optical properties: Decays

@ 10 K

ParisTech

de Chimie Paris

de Chimie Paris

PurisTech

Optical properties: Inhomogeneous linewidth

de Chimie Paris

ParisTech

Optical properties: Inhomogeneous linewidth

de Chimie Paris

ParisTech

Optical properties: Inhomogeneous linewidth

R. Fukumori et al., Phys. Rev. B, 101, 214202 (2020) M. K. Singh et al., APL Mater., 8, 031111 (2020)

Conclusion and outlook

Conclusion and outlook

Conclusions

- Films well crystalized were grown on **all substrates**
- **YSZ** and **MBE template** espacially seem promissing regarding structural and morphological properties

• Film on the **MBE** template gives a slightly **narrower** Γ_{in}

Outlooks

- Measurements of the Γ_h of the most promissing samples
- Develop strategies to improve crystalline quality
- **Nanostructuring** of the films to integrate them into resonators or waveguides

Thanks for your attention !

