Modeling of InAs nanowire growth using a dual-adatom diffusion-limited approach

MOSIIETS Danylo

Supervisors: HOCEVAR Moïra BELLET-AMALRIC Edith CIBERT Joël

danylo.mosiiets@neel.cnrs.fr

Introduction

Introduction: VLS growth of compound semiconductor nanowires

Gold-catalyzed growth

Material: InAs

C.Colombo et al. Phys. Rev. B 77, 155326 (2008)

Self-catalyzed growth

Material: GaAs

The current of adatoms arriving to the droplet is important!

ARSENIC current

Model of Glas describes growth with excess of Ga

neel.cnrs.fr

Kelvin effect

Shadi A. Dayeh. et al., Nano Lett. 2010

Meyer K., Physikalisch-chemische Kristallographie (1968)

The surface energy becomes crucial at small radius

Radius, cm

INDIUM current

Diffusion-limited growth rate

Fröberg, et al. Phys. Rev. B 2007, 76, 153401.

Main current of Indium reaches the droplet via diffusion

Fröberg's growth model

Model of Fröberg based on In diffusion and Kelvin effect

Nanowires growth

Molecular Beam Epitaxy

We are using the MBE technic for nanowire growth

RHEED (reflection high-energy electron diffraction)

Functional scheme of RHEED

(picture from Wikipedia)

RHEED helps :

- determining the surface state
- measuring the growth rate

Flux calibration using RHEED oscillations

Sample preparation and growth process

Example of InAs wires grown @NPSC

Growth modeling NW901

Here we will use the model of F.Glas with the As current

Example of InAs wires grown @NPSC

Growth modeling NW898

Model of Froberg

In diffusion explains the large diameter part and we can determine the In current

Modeling

Dual-adatom model

Case of InAs nanowires: In and As have very different physical properties

In

- Low evaporation rate
- Long diffusion length
- Low surface re-emission

As High evaporation rate Suffers from Kelvin effect

- Small diffusion length
- High surface re-emission

Proposition: develop a model for growth taking into account two species, In and As

As species

In species

Evolution of the current versus NW length

As current change \rightarrow curve shifts up and down

Growth always limited by smallest current

Modeling for our samples for R=20 nm

Fit for the growth results

V/III ratio = 0.9

Example of fit

Full As-limited growth

Fit for the growth results

V/III ratio = 10.6

Example of fit

neel.cnrs.fr

Fit of a series of V/III ratios

Conclusions and perspectives

Conclusions:

- Model based on 2 species works, data can be fitted
- NW growth alternates between In and As limited regimes
- Growth regimes depend on the diameter, the height and the V/III ratio can be different: In-limited, As-limited, Mixed

Perspectives:

- Study of the dispersion in length-diameter dependence
- Dependence on growth temperature
- Impact on the structural quality?

PAPER: D.Mosiiets et al. Crystal Growth & Design 2024 24 (9), 3888-3898

Thank you for attention! Any questions?

danylo.mosiiets@neel.cnrs.fr

Parameters of the model

R_{GT} (R₀) phenomena

Examples of different types of the growth

Examples of different types of the growth

Examples of different types of the growth

In-limited regime of the growth

