

Oxide nanosheets as seed layers for growth of complex oxides on Si and glass

ISCR, Rennes: F. Baudouin, S. Gaddour, M. Barrabe, S. Ollivier, M. Chettab, S. Députier, M. Guilloux-Viry, <u>V. Demange</u>

CRISMAT, Caen: A. Boileau, M. Dallocchio, A. David, U. Lüders, W. Prellier, A. Fouchet

GEMaC, Versailles: B. Bérini, Y. Dumont

P', Poitiers: S. Hurand

Oxide thin films

Functional oxides: ferroelectricity, ferromagnetism, multiferroism, electric conductivity, ionic conductivity, electro-optics, catalysis ...

Oxide thin films

Functional oxides: ferroelectricity, ferromagnetism, multiferroism, electric conductivity, ionic conductivity, electro-optics, catalysis ...

Epitaxial growth on single crystalline oxide substrates: SrTiO₃, LaAlO₃, MgO, ...

M. F. Sarott, E. Gradauskaite, J. Nordlander, N. Strkalj, M. Trassin. J. Phys.: Condens. Matter. **33** (2021) 293001

Workshop OSEPI. May 2024

Oxide thin films

Functional oxides: ferroelectricity, ferromagnetism, multiferroism, electric conductivity, ionic conductivity, electro-optics, catalysis ...

Epitaxial growth on single crystalline oxide substrates: SrTiO₃, LaAlO₃, MgO, ...

M. F. Sarott, E. Gradauskaite, J. Nordlander, N. Strkalj, M. Trassin. J. Phys.: Condens. Matter. **33** (2021) 293001

Complex oxides substrates:

- Expensive
- Difficult to process
- Limited size
- Limited use in industry

Difficulty to integrate oxides on silicon and glass:

- High reactivity of Si with O₂: propensity to form amorphous SiO₂ at the interface
- Structural and chemical dissimilarities
- Differences in thermal expansion coefficients
- Reaction of oxides with Si

Very low crystalline qualityDegradation of the properties

Difficulty to integrate oxides on silicon and glass:

- High reactivity of Si with O₂: propensity to form amorphous SiO₂ at the interface
- Structural and chemical dissimilarities
- Differences in thermal expansion coefficients
- Reaction of oxides with Si

Very low crystalline quality
Degradation of the properties

Breakthrough 1998: McKee *et al*. PRL 81 : first demonstration that SrTiO₃ can be grown directly on Si with an atomically sharp interface using MBE

Heteroepitaxy of a thin template layer

of SrTiO₃ on Si

(001)Si

SrTiO₃ Y₂O₃:ZrO₂ (YSZ) template layer by Pulsed Layer Deposition (PLD) Fork et al. APL 57 (1990) 1137 CeO₂/YSZ Perna et al. J. Phys. Cond. Matter. 21 (2009) 30 Diaz-Fernandez et al. Appl. Surf. Sci. 455 (2018) 227

ZrO₂ template layer by Atomic Layer Deposition (ALD)

Dogan et al. J. Phys. Chem. C 123 (2019) 15053

Limitations: Complex technics

Advantages: High crystalline quality of the template layer

Pioneer work of Sasaki's group (NIMS, Japan), 2007

Layered metal oxide

Pioneer work of Sasaki's group (NIMS, Japan), 2007

Exfoliation in solution

Pioneer work of Sasaki's group (NIMS, Japan), 2007

Exfoliation in solution

Pioneer work of Sasaki's group (NIMS, Japan), 2007

Exfoliation in solution

[Ca₂Nb₃O₁₀]⁻: nanosheets for the growth of (001) perovskite

Layered perovskite Dion-Jacobson phase: AA'_{k-1}B_kO_{3k+1}

A: alkaline metal, A': alkaline-earth metal, B: transition metal

P2₁/m a = 7.741 Å, b = 7.707 Å, c = 14.859 Å, β = 97.51° (larger tetragonal cell description: a = 7.727 Å, b = 29.466 Å)

M. Dion, M. Ganne, M. Tournoux. *Mater. Res. Bull*. <u>16</u> (1981) 1429 T. Tokumitsu, K. Toda, T. Aoyagi, D. Sakuraba, K. Uematsu, M. Sato. *J. Ceram. Soc. Jpn*. <u>114</u> (2006) 795

[Ca₂Nb₃O₁₀]⁻: nanosheets for the growth of (001) perovskite

Layered perovskite Dion-Jacobson phase: AA'_{k-1}B_kO_{3k+1}

A: alkaline metal, A': alkaline-earth metal, B: transition metal

 $P2_1/m$ a = 7.741 Å, b = 7.707 Å, c = 14.859 Å, β = 97.51° (larger tetragonal cell description: a = 7.727 Å, b = 29.466 Å)

M. Dion, M. Ganne, M. Tournoux. *Mater. Res. Bull*. <u>16</u> (1981) 1429 T. Tokumitsu, K. Toda, T. Aoyagi, D. Sakuraba, K. Uematsu, M. Sato. *J. Ceram. Soc. Jpn*. <u>114</u> (2006) 795

[Ca₂Nb₃O₁₀]⁻: nanosheets for the growth of (001) perovskite

Layered perovskite Dion-Jacobson phase: AA'_{k-1}B_kO_{3k+1}

A: alkaline metal, A': alkaline-earth metal, B: transition metal

 $P2_1/m$ a = 7.741 Å, b = 7.707 Å, c = 14.859 Å, β = 97.51° (larger tetragonal cell description: a = 7.727 Å, b = 29.466 Å) Square lattice: a_{NS} ~ 3.85 Å

M. Dion, M. Ganne, M. Tournoux. *Mater. Res. Bull*. <u>16</u> (1981) 1429 T. Tokumitsu, K. Toda, T. Aoyagi, D. Sakuraba, K. Uematsu, M. Sato. *J. Ceram. Soc. Jpn*. <u>114</u> (2006) 795

Nanosheets for preferential orientation of oxides on any substrate

Nanosheets (NS)	2D lattice	Grown films on NS	Substrates	
		(001)SrTiO ₃ (001)(Ba,Sr)TiO ₃	Glass	
[Ca ₂ Nb ₃ O ₁₀] ⁻	Square $a_{\rm NS}$ = 3.85 Å x 3.85 Å	(001)LaMnO₃/STO SLs	Si	
		(001)LAO/STO SLs	Si	
		(001)LaNiO ₃	Si	
		(001)BaTiO ₃	Si	
		(001)(K,Na)NbO ₃	Pt/Ti/SiO ₂ /Si	
		(001)BiFeO ₃	Pt/Si, Pt/TiO ₂ /Si, 316LSS	
		(001)Pb(Zr,Ti)O ₃	Si, Pt/TiO ₂ /Si, glass, 316LSS	
	. 1 .	(001)SrRuO ₃	Si, Glass	
		(001)(Ca,Sr)Bi ₄ Ti ₄ O ₁₅	Pt/TiO₂/Si	
		(110)(Sr,Eu) ₂ (Sn,Ti)O ₄	Glass	
		(001)TiO ₂	Glass	

PLD, Sputtering, Sol-gel

Synthesis of KCa₂Nb₃O₁₀

Solid state reaction:

 $1/2 \text{ K}_2\text{CO}_3 \text{ (+ excess) + 2 CaCO}_3 + 3/2 \text{ Nb}_2\text{O}_5 \rightarrow \text{KCa}_2\text{Nb}_3\text{O}_{10} + 5/2 \text{ CO}_2$

Protonation: ion exchange $K^+ \rightarrow H^+$

P4/mbm, a = 5.452 Å, c = 14.414 Å

A.J. Jacobson, J.T. Lewandowski, J.W. Johnson. J. Common Met. 116 (1986) 137 Y. Chen, X. Zhao, H. Ma, S. Ma, G. Huang, Y. Makita, X. Bai, X. Yang. J. Solid State Chem. 181 (2008) 1684 L.V. Yafarova, O.I. Silyukov, T.D. Myshkovskaya, I.A. Minich, I.A. Zvereva. J. Therm. Analysis. Calorim. (2020)

X-ray diffraction

Exfoliation

Tetra(n-butyl)ammonium hydroxide (TBAOH)

R.E. Schaak, T. Mallouk. *Chem. Mater.* <u>12</u> (2000) 2513 H. Yuan, D. Dubbink, R. Besselink, J.E. Elshof. *Angew. Chemie. Int. Ed.* <u>54</u> (2015) 9239 J.E. Elshof. H. Yuan, P Gonzalez Rodriguez. *Mater. Views.* <u>6</u> (2016) 1600355

Exfoliation

Tetra(n-butyl)ammonium hydroxide (TBAOH)

- Acid-base reaction between OH⁻ from TBAOH and H⁺ from HCN

R.E. Schaak, T. Mallouk. *Chem. Mater.* <u>12</u> (2000) 2513 H. Yuan, D. Dubbink, R. Besselink, J.E. Elshof. *Angew. Chemie. Int. Ed.* <u>54</u> (2015) 9239 J.E. Elshof. H. Yuan, P Gonzalez Rodriguez. *Mater. Views.* <u>6</u> (2016) 1600355

Tetra(n-butyl)ammonium hydroxide (TBAOH)

Nanosheets in solution: $[H_{1-y}TBA_y]^+[Ca_2Nb_3O_{10}]^- + H_2O$

- Acid-base reaction between OH⁻ from TBAOH and H⁺ from HCN

- TBA keep nanosheets in a well-dispersed state in water

R.E. Schaak, T. Mallouk. *Chem. Mater.* <u>12</u> (2000) 2513 H. Yuan, D. Dubbink, R. Besselink, J.E. Elshof. *Angew. Chemie. Int. Ed.* <u>54</u> (2015) 9239 J.E. Elshof. H. Yuan, P Gonzalez Rodriguez. *Mater. Views.* <u>6</u> (2016) 1600355

[Ca₂Nb₃O₁₀]⁻ nanosheets

Nanosheet colloidal suspension: Tyndall effect

Weak superlattice { $\frac{1}{2}$, $\frac{1}{2}$, 0} reflections: $\sqrt{2}a$ lattice constant ~ 5.46 Å

A. Maia, F. Cheviré, V. Demange, V. Bouquet, M. Pasturel, S. Députier, R. Lebullenger, M. Guilloux-Viry, F. Tessier. *Solid State Sci*. <u>54</u> (2016) 17-21 F. Baudouin, V. Demange, S. Ollivier, L. Rault, A. S. Brito, A. S. Maia, F. Gouttefangeas, V. Bouquet, S. Députier, B. Bérini, A. Fouchet, M. Guilloux-Viry. *Thin Solid Films* <u>693</u> (2020) 137682

Nanosheets seed layer deposition by drop-casting method

Y. Shi, M. Osada, Y. Ebina, T. Sasaki. ACS Nano <u>14</u> (2020) 15216

Easy Fast (dozens samples/day) No waste of material Large substrates (several cm²)

Limitations:

« Coffee-ring » marks **Operator dependent**

After deposition: atomic force microscopy/SEM

Sciences Chimiques

After deposition: in-plane X-ray diffraction

Workshop OSEPI. May 2024

Random in-plane distribution of nanosheets on the substrate

Texturation of the film grown on nanosheets covered substrate

In-plane RSM

15

Workshop OSEPI. May 2024

Growth of complex oxides: KNbO₃ on [Ca₂Nb₃O₁₀]⁻/glass

Amm2 a = 3.9741(0) Å; b = 5.6965(0) Å; c = 5.726(1) Å Pseudo-cubic cell: $a_{pc} = 3.971$ Å, $b_{pc} = 4.027$ Å, $c_{pc} = 4.045$ Å

L. Katz and H.D. Megaw. *Acta Cryst*. <u>22</u> (1967) 639 S. Kawamura *et al. Jpn J. Appl. Phys*. <u>52</u> (2013) 09KF04

Workshop OSEPI. May 2024

Growth of complex oxides: KNbO₃ on [Ca₂Nb₃O₁₀]⁻/glass

Sciences Chimiaúes

*Amm*2 *a* = 3.9741(0) Å; *b* = 5.6965(0) Å; *c* = 5.726(1) Å Pseudo-cubic cell:

300 nm

 a_{pc} = 3.971 Å, b_{pc} = 4.027 Å, c_{pc} = 4.045 Å

L. Katz and H.D. Megaw. *Acta Cryst*. <u>22</u> (1967) 639 S. Kawamura *et al. Jpn J. Appl. Phys*. <u>52</u> (2013) 09KF04

Pulsed Laser Deposition: on SrTiO₃, on glass, on [Ca₂Nb₃O₁₀]⁻/glass

F. Baudouin, V. Demange, S. Ollivier, L. Rault, A.S. Brito, A.S. Maia, F. Gouttefangeas, V. Bouquet, S. Députier, B. Bérini, A. Fouchet, M. Guilloux-Viry. *Thin Solid Films* <u>693</u> (2020) 137682

Growth of complex oxides: KNbO₃ on [Ca₂Nb₃O₁₀]⁻/Si

KNbO₃/Si

 $K_6 Nb_6 Si_4 O_{26}$ *P*-62*m a* = 9.032 Å *c* = 8.041 Å

J. Choisnet *et al. Mater. Res. Bull*. <u>11</u> (1976) 887 KNbO₃/[Ca₂Nb₃O₁₀]⁻/Si

Workshop OSEPI. May 2024

Growth of complex oxides: KNbO₃ on [Ca₂Nb₃O₁₀]⁻/Si

KNbO₃/3 layers [Ca₂Nb₃O₁₀]⁻/Si

de Rennes

KNbO₃/4 layers [Ca₂Nb₃O₁₀]⁻/Si

Magnetic La_{0.67}Sr_{0.33}MnO₃ films on glass (PLD)

A. Boileau, M. Dallocchio, F. Baudouin, A. David, U. Lüders, B. Mercey, A. Pautrat, V. Demange, M. Guilloux-Viry, W. Prellier, A. Fouchet. ACS Appl. Mater. Int. 11 (2019) 37302

Magnetic La_{0.67}Sr_{0.33}MnO₃ films on glass (PLD)

A. Boileau, M. Dallocchio, F. Baudouin, A. David, U. Lüders, B. Mercey, A. Pautrat, V. Demange, M. Guilloux-Viry, W. Prellier, A. Fouchet. ACS Appl. Mater. Int. 11 (2019) 37302

Transparent conducting SrVO₃ and CaVO₃ films on glass (PLD) Resistivity Transmittance

A. Boileau, S. Hurand, F. Baudouin, U. Lüders, M. Dallocchio, B. Bérini, A. Cheikh, A. David, F. Paumier, T. Girardeau, P. Marié, C. Labbé, J. Cardin, D. Aureau, M. Frégnaux, M. Guilloux-Viry, W. Prellier, Y. Dumont, V. Demange, A. Fouchet. Adv. Func. Mater. <u>32</u> (2022) 2108047

TiO₂ thin films grown by atomic layer deposition (ALD)

5 nm TiO₂ on Si: amorphous

ALD GEMaC Geeder

A. Grishin B. Bérini

HR(S)TEM

S tructures P roperties M odeling of S olids

M. Vallet

A. Grishin, B. Bérini, M. Vallet, S. Hurand, F. Maudet, C. Sartel, M. Frégnaux, S. Nowak, G. Amiri, S. Hassani, D. Aureau, V. Sallet, V. Demange, Y. Dumont. Appl. Surf. Science. 641 (2023) 158446

TiO₂ thin films grown by atomic layer deposition (ALD)

5 nm TiO₂ on Si: amorphous

A. Grishin, B. Bérini, M. Vallet, S. Hurand, F. Maudet, C. Sartel, M. Frégnaux, S. Nowak, G. Amiri, S. Hassani, D. Aureau, V. Sallet, V. Demange, Y. Dumont. Appl. Surf. Science. 641 (2023) 158446

TiO₂ thin films grown by atomic layer deposition (ALD)

A. Grishin, B. Bérini, M. Vallet, S. Hurand, F. Maudet, C. Sartel, M. Frégnaux, S. Nowak, G. Amiri, S. Hassani, D. Aureau, V. Sallet, V. Demange, Y. Dumont. Appl. Surf. Science. 641 (2023) 158446

Sciences Chimiques

CNRS de Rennes

Crystal size of the parent phase: KCa₂Nb₃O₁₀

Molten salts:

Excess of K₂CO₃

Growth temperature

Cooling rate

Salts: KCl, K₂SO₄, K₂MoO₄

Ratio salt/precursors

Pure phase

Crystals size

Solid state reaction

Molten salt: K₂SO₄

Molten salt: $K_2MoO_4(1)$

Molten salt 2: K_2MoO_4 (2)

Effect of growth methods of the parent phase on nanosheets size Solid state reaction Molten salt: K₂SO₄

~ 0.1 – 0.2 μm

Molten salt: K₂MoO₄(1)

<u>1μm</u>

~ 2 – 5 µm

Molten salt 2: K₂MoO₄(2)

> 50 µm

45

26.0

um

18

11.0

10.0

Other nanosheets for oxide growth

Nanosheets for preferential orientation of oxides on any substrate

Nanosheets (NS)	2D lattice	Grown films on NS	Substrates
[Ti _{0.87} O ₂] ^{0.52-}	Rectangle	(110)SrTiO ₃	Glass
	c _{NS} ~ 2.97 Å	(110)SrRuO₃	Si
		(110)Pb(Zr,Ti)O ₃	Si, Si ₃ N ₄
		(011)VO ₂	Si, Pt/TiO ₂ /Si
[Cs ₄ W ₁₁ O ₃₆] ²⁻	Hexagonal <i>a_{Ns}</i> = 7.261 Å	(001)ZnO	Glass, polymer
[MnO ₂] ^{0.45-}	Hexagonal a _{NS} = 2.94 Å	(001)ZnO	Glass
[MoO ₂]δ-	Hexagonal a _{NS} = 2.90 Å	(111)SrTiO ₃	Glass
[NbWO ₆] ⁻	Square a _{NS} = 4.68 Å x 4.68 Å	(-402)VO ₂	Si, Si ₃ N ₄

Refs: Sasaki's articles, Ten Elshof articles, ...

[Ti_{0.865}O₂]^{0.54-} nanosheets for (110) perovskite growth

[Ti_{0.865}O₂]^{0.54-} nanosheets for (110) perovskite growth

 $K_{0.8}Ti_{1.73}Li_{0.27}O_4$

In-plane XRD

de Rennes

[Ti_{0.865}O₂]^{0.54-} nanosheets for (110) perovskite growth

 $K_{0.8}Ti_{1.73}Li_{0.27}O_4$

In-plane XRD

[(Ti,Co,Fe)_{0.865}O₂]^{0.54-}

[MnO₂]^{0.45-} nanosheets for (111) perovskite growth

[MnO₂]^{0.45-} nanosheets for (111) perovskite growth

a_{NS} = 2.94 Å

Sciences Chimiques

CNRS de Rennes

Yano *et al*. (3 months) See Sahar Gaddour's poster

Yano et al. Cryst. Growth Des. (2022) 22

Master 2

First attempt of exfoliation

Conclusions

- Integration of various oxides (including oxides that react with Si) on Si and glass thanks to nanosheets

- Excellent properties of thin films grown on Si or glass
- Easy process, large surface
- Synthesized nanosheets: [Ca₂Nb₃O₁₀]⁻, [Sr₂Nb₃O₁₀]⁻, [Ti_{0.865}O₂]^{0.54-}, [MnO₂]^{0.45-}

and also : $[K_{4-x}Nb_6O_{17}]^{x-}$, $[Cs_4W_{11}O_{36}]^{2-}$, $[(Ti,Co,Fe)_{0.865}O_2]^{0.54-}$

Acknowledgements

Florent Baudouin	Amélia Baucher	<section-header></section-header>	Sahar Gaddouu	UAR Sca Ludivine Francis Gou Loïc Jo	anMAT e Rault ittefangeas oanny
			the second		CONTRACTOR
PhD 2018-2022 Ir	nternship M2 2021	Internship M1 2022	Internship M2 2024		USIKI
(in)	5			anr	
GE Court of the design of the	And Construction	Institut Lavoisier de Versailles	"PolyNash "Flexo" Af "DisTCOve	n" ANR-17-CEC NR ANR-21-CE ery" ANR-23-C)8-0012 09-0046 E08-0008-05

-