

Infrared GeSn photodetectors: new avenues in monolithic Si photonics

• Simone Assali, Théophile Willoquet, Vincent Calvo, Nicolas Pauc

> Cea irig Quantum Physics & Engineering UG Université Grenoble A

• Jean-Michel Hartmann

Prof. Oussama Moutanabbir

Polytechnique Montréal, Canada

Electronics

Optics

Monolithic integration on a Si wafer:

- Scalable fabrication
- CMOS compatibility
- Cost reduction
- Wide-scale adoption

Sn-based group IV semiconductors

- Si, Ge: indirect band gap \rightarrow Low efficiency light emission, high performance detectors.
- GeSn alloys: indirect to direct band gap transition >9 at.% Sn.
- SiGeSn alloys: incorporate Si to increase the band gap and engineer barrier layers.
- Design high efficiency infrared photonic devices on Si.

A. Attiaoui et al., J. Appl. Phys. 116 (2014)

Infrared photonics

NIR: Near Infrared / SWIR/MWIR: Short or Medium wave infrared / LWIR/VLWIR: Long or Very long wave infrared

GeSn <25 at.%

• GeSn in an exceptional infrared photonics platform on Si that can compete with III-V and II-VI technologies.

Infrared photonics

Data communications

J.J. Ackert, Nature Phot. 9 (2015)

2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 Wavelength (nm)

Multi-junction solar cells

M.P. Lumb, Adv. Ener. Mat. 1700345 (2017)

Free-space imaging

Food inspection

MWIR/LWIR

In vivo

LIDAR

F. Wang, Nature Nanotech. **17** (2022)

(Si)GeSn photonic devices

Emitters

POLYTECHNIQUE Montréal

H. Tran *et al., ACS Phot.* **6** (2019) M.R.M. Atalla *et al., ACS Phot.* **9**, 4 (2022)

B.-J. Huang et al., ACS Phot. 6 (2019)

Lasers

POLYTECHNIQUE Montréal

S. Wirths et al., Nature Phot. 9 (2015)
A. Elbaz et al., Nature Phot. 14 (2020)
Y. Zhou et al., Optica 7 (2020), Phot. Res. 10 (2022)

Optical modulators

Y.-D. Hsieh *et al., Comm. Mat.* **2** (2021)

Photovoltaics

G. Timó et al., Sol. Ener. Mat. & Sol. Cells 224, 111016 (2021).

Transistors

M. Liu et al., ACS Appl. Nano Mater. 4 (2021) M. Liu et al., Comm. Eng. 2 (2023)

5

GeSn challenges

1. Low equilibrium solubility of Sn in Ge (~1 at.%).

- → <u>Metastable</u> material!
- 2. Spontaneous phase transition from α -Sn into β -Sn above 13 °C.

J. Nicolas et al., Cryst. Growth Des. 20, 5 (2020)

3. Lattice mismatch Ge and α -Sn up to 14 % \rightarrow Strain relaxation via dislocations.

GeSn thin films epitaxy on Si

- Growth in a 100 mm CVD showerhead reactor and H₂ atmosphere.
- Precursors for SiGeSn:
 - Germane (GeH₄)
 - Tin-Tetrachloride (SnCl₄)
 - Disilane (Si₂H₆)
- Doping:
 - Diborane (B₂H₆)
 - Arsine (AsH₄)
- Isotopically-enriched precursors:
 - ^{28,29,30}SiH₄, ⁷⁰GeH₄

How to boost the Sn incorporation in Ge?

- 1. Temperature: increase 1-2 at.% Sn every -10 °C.
- 2. Strain relaxation: multiple buffer layers.
- 3. Sn/Ge ratio in gas phase.

8

S. Assali *et al., Appl.Phys.Lett.* **112**, 251903 (2018) S. Assali *et al., J. Appl. Phys.* **125**, 025304 (2019) E. Bouthillier, S. Assali *et al., Phys. Rev. Appl.* **35**, 095006 (2020)

GeSn thin films epitaxy on Si

- Up to 17 at.% Sn and uniform composition.
- Compressive strain $\varepsilon_{||} = -1.3$ %.

E. Bouthillier, S. Assali *et al.*, Semicond. Sci. Technol., **35** (2020)
S. Assali *et al.*, *J. Appl. Phys.* **125**, 025304 (2019)
S. Assali *et al.*, *Appl. Phys. Lett.* **112**, 251903 (2018)

GeSn thin films photodetectors

- PIN photodiodes with B (p-type) and As (n-type) dopants.
- i-layer: 10 at.% Sn.

3D Atom probe tomography (APT)

GeSn thin films photodetectors

- Excellent performance for a new technology (<10 years old).
- No III-V, II-VI semiconductor technologies can offer similar speed at 2.5 μm at 300 K.

M.R.M. Atalla, ..., S. Assali et al., APL Phot. 9, 5 (2024)
M.R.M. Atalla, S. Assali et al., Appl. Phys. Lett. 122, 3 (2023)
M.R.M. Atalla, S. Assali et al., ACS Phot. 9, 4 (2022)
M.R.M. Atalla, S. Assali et al., Adv. Func. Mat. 31, 2006329 (2021)

GeSn thin films photodetectors

- x <u>Challenge</u>: lattice-mismatch results in defective layers and very high dark current, suppressing efficiency.
- Improving material quality is essential for next generation devices.

M.R.M. Atalla, ..., S. Assali *et al.*, *APL Phot.* **9**, 5 (2024) M.R.M. Atalla, S. Assali *et al.*, *Appl. Phys. Lett.* **122**, 3 (2023) M.R.M. Atalla, S. Assali *et al.*, *ACS Phot.* **9**, 4 (2022) M.R.M. Atalla, S. Assali *et al.*, Adv. Func. Mat. **31**, 2006329 (2021)

CEA approach: top-down etched NW arrays

- Fabrication: e-beam lithography + reactive ion etching.
- Control the NWs diameters, pitch, and tapering.

Advantages of the NW array devices:

- Enhanced light absorption.
- Tune the resonant peaks with NW parameters.
- Reduced dark current.
- Si-compatible wafer-level fabrication processes.
- Goal of the PhD thesis of T. Willoquet (PhD): exceed thin films device efficiency by 10-100 times and unlock compact, uncooled NW-based photodetectors.

A. Attiaoui, S. Assali *et al., Phys. Rev. Appl.* **15**, 014034 (2021) 13

The future of GeSn: selective area growth (SAG)

• Filtering dislocations in the oxide mask will result in **defect-free** GeSn devices.

Y. De Koninck et al. arXiv:2309.04473 (2024)

Sn-rich group IV semiconductors

- A rich playground for materials science, photonics, and quantum technologies.
- By controlling composition and dimensionality we can unveil novel material properties.
- Free-space optical technologies are at reach with GeSn semiconductors.
- Yet, fundamental knowledge on material and device properties is missing.

Prof. Oussama Moutanabbir

Epitaxy and XRD

ΑΡΤ

Sebastian Koelling

Samik Mukherjee

Patrick Daoust Aashish Kumar Jerome Nicolas

Theory Patrick del Vecchio Gerard Daligou Nicolas Rotaru Gabriel Fettu

r la nature

Ouébec 🏼 🕷

fense

tpr WD-Photon Re

Canada

Chairs

Optics, devices Anis Attiaoui Lu Luo

Acknowledgments

 Cea
 irig

 Irig
 Irig

 Pheliqs
 Uc

 Université
 Iriversité

 Grenoble Albest
 Iriversité

GeSn detectors

Théophile Willoquet (PhD student) Nicolas Pauc Vincent Calvo

MBE+CVD epitaxy Pascal Gentile

CVD epitaxy Jean-Michel Hartmann

