

Electron Channeling Contrast Imaging for epi-layer structural defect characterization

A. Gilbert, A. Meguekam, E. Tournié and J.-B. Rodriguez

Acknowledgements : DFG / ANR (FILTER, ANR-20-CE92-0045), Equipex+ HYBAT, ANR-21-ESRE-0026

Need for an effective dislocation counting technique

Threading dislocations counting technique 2 (19) **22 (19)** 22 (19) 23 (19) Threading dislocations counting techniques

Etch-Pit Density (EPD)

EPD in InP, *E.Peiner and A. Schlachetzki, Journal of El. Mat., Vol, 21, No. 9, 1992*

control of the results.

Si III-V TEM G. Patriarche, C2N Cross section TEM Threading dislocations counting techniques Surface morphology AFM GaSb on Si

Historical perspective

- **Observation of "Kikuchi-like" bands** : Coates, 1967
	- Access to the crystal orientation in a SEM
- **Explanation = "anomalous absorption" at Bragg angle** : Booker *et al*., 1967
	- ECP ≠ Kikuchi lines because not related to diffraction
	- **Imaging dislocations is possible because the bending of the lattice planes changes the absorption**
	- Access to the **Burgers vector**
- Dynamical **theory** calculation : Clarke and Howie 1971
	- Need high currents and high accelerating voltages to observe defects \rightarrow FEG SEM, STEM
- **First attempt in Scanning TEM** : Clarke *et al*., 1971
	- 80-100 kV STEM, thin foil
- **First attempts in SEM** : Pitaval et al., 1977, Morin et al., 1979
	- FEG SEM, large tilt (50-70°), high-energy filter, side-mounted BSED
	- \rightarrow dislocations in Si and invisibility criteria validated
- **More convenient config**. : Ng *et al*., 1998, Simkin and Crimp, 1999
	- $\frac{1}{2}$ Standard 4-quadrant Si diode detector on the pole piece \rightarrow small tilts

Kikuchi-like ReJlection Patterns with the S.E.M. **1183** Fig. **4** *Coates, Phil Mag 16:1179, 1967* ECP Ge sample

rotation in the tilted plane. Figure **3** shows a pattern having a **(111)**

Back scattered signal from a crystal : influence of the incidence angle

How can we orientate the sample wrt the e⁻ beam?

Adapted from Joy et al., J. Appl. Phys., 53(8), 1982

Max scan angle 2θ Scanned ray θ θ _B Braggs condition ∶ 2d. $sin(\theta_B) = n \cdot \lambda$ d Bragg planes Back-scattered signal *Adapted from Joy et al. J. Appl. Phys., 53(8), 1982* Scan angle $\theta_{\rm B}$ $\theta_{\rm B}$ INSTITUT
D'ÉLECTRONIQUE
ET DES SYSTÈMES

Low-magnification : contrast related to the crystal structure

- Enhanced back-scattered signal when $|\theta| < \theta_B$
- Interpreted as the superposition of two Block wave functions
- True for many lattice-planes

\rightarrow Electron Channeling Pattern

Allows to orientate (tilt and rotation) the sample to set the channeling direction of interest

Back scattered signal from a crystal : structural defects

Structural defects such as dislocations have a strong BSE contrast in channeling condition $→$ **ECCI (Electron Channeling Contrast Imagery)**

Some examples from the literature

When the di"raction vector is rotated 90° (Figure 3b), *doi:10.1017/S155192951200007* SrTiO₃ (001) substrate 90° in (b). *Y.N.Picard et al., Micr. Today, 2012*

Nearly the entire surface of mesa E could be *doi: 10.1007/s11664-007-0308-0* Screw dislocation SiC / 4HSiC *Y.N.Picard et al., JEM, 2007*

\sim but could not be directly imaged due to the due to GaAs / Si

face. No dislocations or other spirals were observed, *Jung et al., Appl. Phys. Lett. 112, 153507 (2018) 10.1003/1.4663371* doi: /10.1063/1.5026147 **doi:** /10.1063/1.5026147 $\frac{1}{2}$ significant lateral growth. As discussed earlier, $\frac{1}{2}$

(a) Gen-I (TDD=2.8×10⁸ cm⁻²) (b) Gen-II (TD

 MD is observed. MD network, GaP / Si IVID HELWOIK, GdP $/$ 31
Carnevale et al. Anni Phys. Lett. 104, 232111 (2014) stepped and step-free mesas in that study was to *10.1063/1.4883371* Carnevale et al., Appl. Phys. Lett. 104, 232111 (2014)
10.1063/1.4883371

scattering model based on the scattering matrix formalism,²⁴

9

SEM-FEG JEOL JSM-IT800 HL

- Installed summer 2023
- Field emission electron gun
- BSE detector
- Full eucentric goniometer stage

GaSb on Si (001)

A wide range of dislo. densities can be measured accurately

GaSb on Si (001) : Dislocation Density

Statistic counting on sample C2345

Low threading dislocation densities \rightarrow inhomogeneous distribution

GaSb on Si (001) : Misfit dislocation arrays

CNTS

W

AlSb Cast
AlSb AlSb GaSb Si

INSTITUT
D'ÉLECTRONIQUE
ET DES SYSTÈMES

AlSb strain relaxed by the formation of an array of dislocation

Conclusion

ECCI is a powerful tool to study defects in epi layers :

- Non-destructive
- Relatively simple and quick (5 min to 1 hour)
- Very accurate dislocation density measurements
- Sensitive to the burger's vector (invisibility criterion) \rightarrow to be explored !

