

Nitride nanowire light emitting diodes: from single wire properties to device applications

M. Tchernycheva¹, N. Amador, S. Vézian, B. Damilano, J. Bosch, B. Alloing, J. Eymery, C. Durand

¹*C2N-CNRS, University Paris Saclay, 91120 Palaiseau, France*

Outline

- **Nitride thin film LEDs and open issues**
- **Nanowires for LEDs**
- **From individual wires to array LEDs**
- **Flexible nanowire LEDs**
- **UV nanowire LEDs**
- **Nanoporous LEDs**
- **Summary**

Nitride semiconductor family

Direct badgap covering NIR – visible – UV ranges

- InGaN/GaN visible
- GaN/AlGaN UV

InGaN/GaN light emitting diodes

Blue GaN/InGaN LED demonstrated in 1993

Nobel Prize in Physics 2014 (Akasaki, Amano, Nakamura)

LED luminous efficacy > 300 lm/W (incandescent lamp is \approx 10-20 lm/W) $_4$

Applications of visible LEDs

Nitride white LED for lighting

- Rapidly growing (70 billion \$ market for nitride devices)
- Additional functionality of color tuning
- Eco-friendly and huge energy saving

LEDs and micro-LEDs for displays

Issues of thin film LEDs

• Green gap **•** Efficiency droop

- Light extraction
- Internal electric field Material quality

6

Nanowires as a way to boost the LED performance or to bring new functionalities

Nanowire LEDs

Can we improve the performance using functional nanomaterials?

Nanowires versus quantum wires

Quantum wires

Example : V-groove QWire Presents 1D quantum confinement Embedded in a crystalline matrix

Kapon, EPFL, 1988

Bottom-up nanowires

Not a quantum object In ambient environment *Typical diameter 10 -- 1000 nm*

Incorporation of confining heterostructures (along the axis -- 0D, on the edges -- 1D, on the sidewalls -- 2D)

Nanowires – new opportunities for material elaboration

Strain relaxation

- Strain relaxation by the free surface nanowires have an excellent crystalline quality independently of the lattice mismatch or thermal coeff. mismatch
- In thick NWs, if a dislocation is formed, it bends to join the lateral surface

Defect-free growth on cheap substrates (including Si, metals and non-crystalline materials)

New opportunities for synthesis

• Control of composition by local environment

• New degrees of freedom (e.g. core/shell heterostructures – reduction of Auger effect)

Sophia Univ, Tokyo 9

Organized LED nanowire arrays

• MOCVD growth on nanopatterned substrates to control the wire homogeneity

MOCVD by GLO (O. Kryliouk, R. Ciechonski, G. Vescovi)

LEDs from organized nanowire arrays

Issues with NW LEDs

Optical inhomogeneity

Electrical inhomogeneity Strong intensity fluctuations

H. Zhang, et al., Nanotechnology 2020; A. Kapoor et al, Appl Mat & Int 2020, J. Bosch et al., Crystal Growth & Design 2022

Cathodoluminescence and Electron beam induced current microscopy

Signals generated during e-beam/matter interaction

12

Cathodoluminescence

Steady state and pulsed

(<10 ps) modes

1-100 electrons/pulse:

low excitation technique

From 4 K to 300 K Acceleration voltage = 3-10 kV

Luminescence spectrum versus beam position map

Nanopyramid LED

SEM CL filtered maps

Electron beam induced current microscopy

Current versus beam position map of a nanowire LED from macro to nano scale

Sample preparation for the cross-section EBIC and cathodoluminescence mapping

SEM image of the cleaved edge

Possible to cleave some nanowires along their axis while preserving the electrical connection with the substrate and with ITO

Compositional variation in the NW QW

- Peak wavelength redshifts towards the top
- Green emission for excitation at the m-plane/semipolar plane junction
- In-rich region in the QW at the m-plane/semipolar plane junction

Post-growth treatment to tune the emission color

ü **Decrease of the forward current (smaller injection surface)** ü **Increase of the blue peak** It is possible to control the NW LED color by a post-growth treatment The price to pay is loosing a part of the active area

H. Zhang et al, Nanotechnology 2015

Problem of the electroluminescence inhomogeneity : correlation between EBIC and EL maps

Correlation between EBIC and cathodoluminescence

 Both CL intensity and spectra for "abnormal" NWs shows no anomalies

Good wire-to-wire homogeneity of the cathodoluminescence

EL map (different region)

Cathodoluminescence is present in all NWs with almost constant intensity $\frac{1}{2}$ $\frac{1}{2}$

 \checkmark QE of the InGaN QW is not affected (no pronounced non-radiative defects)

Electroluminescence is very spotty

 $✓$ **Electrical properties should be questioned**

Abnormal EBIC signal in cross-sectional maps

Signal is localized at the nanowire core

Charge traps at the core/ underlayer interface could lead to an inhomogeneous injection

Tentative explanation : formation of a discontinuous SiGaN layer due to high Si doping of the NW core

Front contacting for direct electron injection in the underlayer

Inject electrons directly in the core avoiding the core/shell interface

Improved EL yield for front contacting process

core e injection underlayer e injection

Direct electron injection in the underlayer allows to increase the yield of EL NWs from 19% to 65% *H. Zhang et al, Nanotechnology ²⁰²⁰* ²³

Surface NW treatment to improve the growth homogeneity

Remove the SiGaN shell by a chemical treatment

Investigation of different chemistries + regrowth of the QWs

 \checkmark Best optical results for H₃PO₄ etching

J. Bosch et al, Cryst. Growth Des. 22, 9, 5206 (2022) 24

Analyses of the surface SiGaN passivating layer

passivation layer by the treatment and a better crystalline quality in H3PO4 sample

SiGaN passivation layer: Constant thickness of 2 monolayers Composition is close to $Si₃Ga₅N₉$

HAADF EDX study

Contracted by ≈5.6%

J. Bosch et al, Cryst. Growth Des. 22, 9, 5206 (2022)

 n_m

Present status of rigid nanowire InGaN/GaN LEDs

InGaN nanowire LEDs, GLO AB, 20 % WPE Monemar et al. Semicond. & semimetals 2016; Nami, M. Sci. Rep. 2018

Academic labs and start-ups are working hard to bring nanowire-based LEDs to maturity and make them enter the market

- Promising technology, however the WPE (30%) is still not competitive for lighting
- No interest for lighting, but good for alternative applications :

Flexible LEDs based on nanowire / polymer membranes

Replace organic semiconductor devices

Combine crystalline III-V materials with flexible polymers

- \checkmark Flexibility of polymers and high efficiency and long lifetime of crystalline materials
- \checkmark Modularity combination of "incompatible" materials

Self-assembled nanowire LEDs

Flexible blue LED

• Ag NWs and carbon nano-tubes both form a reliable contact to nitride NWs – no degradation after 10 bending cycles ($R_{\text{bending}} \approx 0.3 \text{ cm}$)

> *D. Xing, et al., Nano Letters, 15, 6958 (2015) N. Amador et al, submitted* 29

Fully transparent LEDs

- Rectifying diode behavior
- Electroluminescence (V>3 V)
- Transmittance 60 % @ 550 nm

D. Xing, et al., Nano Letters, 15, 6958 (2015)

Producing green emission: In-rich radial quantum wells

Growth of the QWs at different temperatures

A. Kapoor et al, ACS Photonics (2018) QW th = 6.7 nm 23% of In in m-plane QWs In-rich regions with 35%

Green emission for QWs grown at 650 C

A. Kapoor et al, Adv. Photonics Res. (2021)

Two-layer green-blue flexible LED

- Demonstration of 2-color stacked NW flexible LED
- Emission in blue and green spectral regions

Flexible LED color quality

CCT 6306 K CRI 54

Color optimization:

- Mass ratio of phosphor: PDMS increased from 1:20 to 1:10
- 2 different PDMS thicknesses
- 5 phosphors (yellow, orange, mixture)

After color optimization

- CCT 4000 5000 K warm white
- Best CRI 84

N. Guan et al, ACS Photonics (2016); N. Guan et al, Journal of Physics: Photonics (2019); M. Abraham et al., Dalton Transactions (2021); K. Thejas et al., Applied Mat Today (2021) ³³

decrease Stretchable LEDs \mathbf{t}

- 15% resistivity increase under 20% stretched conditions, no change in relaxed
- positions and spectrum shapes, indicating a high stability of $\mathcal{D}(0)$ U_{tot} became less intense under stretching to Z_{tot} line), and released (**black line**) states. (**b**) Working voltage during the stretching test of the LED for a constant injection • EL spectra show no significant change under stretching to 20%

Kochetkov et al., Nanomaterials 11, 1503 (2021)

UV LEDs : material

Replace InGaN/GaN by GaN/AlGaN quantum wells

UV LEDs : applications

H. Hirayama 2018 10.5772/intechopen.79936

UV LEDs : present issues

Planar LEDs :

- Threading dislocations
- Issues with light extraction
- Doping

NW LEDs : transparent conductive electrode for an ultraviolet light-emitting diode in a flip-

- No defects originating from the substare emitting offered assistance that the use of the use of the use of the molecular beam ended the use of the use o sheet resistance is increased after nanocolumn growth compared with pristine
- Easier light extraction functions adequately as an electrode. The GaN/AlGaN nanocolumns are found
- Reports on higher doping Room-temperature electroluminescence measurements show a GaN related near bandgap emission peak at 365 nm and no defect-related yellow emission.

10.1002/admt.202101502

Applications of UV LEDs on non-planar surface

- \rightarrow Water/air disinfection processing in flexible tubes
- \rightarrow Medical applications (skin care, implants...)
- \rightarrow UV pump for visible emission in flexible LEDs/displays

MOVPE growth of core-shell UV nanowires

GaN nanowires as templates for core-shell UV multi-quantum wells

Step 1: Nanowire growth by silane assisted method

For the simplicity and clarity of the study, the MOVPE process parameters *Koester et al. Nanotechnology, 21, 015602 (2010)* (growth temperature, percussor flow, V/III ratio, carrier gas flow and reactor Kapoor et al. ACS Appl. Mater. Interfaces 12, 19092
(2000) (2020) *(2020)*

Step 2: Growth of core-shell GaN/AlGaN MQWs

★ Smooth growth of GaN/AlGaN MQWs on upper part with the GaN spacer

Grenier et al., ACS Appl. Mater. Interfaces 12, 44007 (2020)

Structural analyses of core-shell GaN/AIGaN multi-quantum wells for UV-A emission Figure 20 and Structural analyses of core-shell (interpolation is used to determine the GaN QW thicknesses of antum walle for IIV-A a <u>anuani woho ivi of A</u>U $\mathbf S$ chematic of Gan wire showing the different doping $\mathbf S$ une of core-shell GaN/AlGaN

Cross-sectional images Top-view images 4.3 nm QWs (a) (b) (c) (d) AADE-STE Wire upper part **AlGaN barrie** GaN QW GaN/AIGaN 10 MQWs content (%)
content (%)
co 4 m **GaN** core 100 100 nm $1 \mu m$ Position along m (nm) 2.6 nm QWs (h) (e) (f) (g) **20 nm HAADF-STEN** 5_{nm} $\vec{\mathsf{L}}\vec{\overline{m}}$ 20 nm GaN/AIGaN 10 MQWs $\begin{array}{c}\n\text{content} (\%)\n\\
\text{on} \text{tent} \\
\text{o} \\
\text{o} \\
\text{o}\n\end{array}$ · Exp. Data *Figure 82 : Croissance de puits cœurs-coquilles GaN/AlGaN avec des puits GaN de 4 nm. (a) Observation en Figure 82 : Croissance de puits cœurs-coquilles GaN/AlGaN avec des puits GaN de 4 nm. (a) Observation en coupe longitudinale (a) en mode STEM-HAADF, (b) en EDX avec cartographie (Ga : vert et Al : bleu) et profil coupe longitudinale (a) en mode STEM-HAADF, (b) en EDX avec cartographie (Ga : vert et Al : bleu) et profil* **GaN** core $\frac{\text{max}_{1,1} \left| \mathbf{A} \right|}{\text{max}_{1,20}}$ \rightarrow Core-shell GaN/Al_{0.3}Ga_{0.7}N QWs 10 nm 200 nm

Figure 2. Institutional cross sections of Algan core−shell with 10 Games with 10 Grenier et al., ACS Appl. Mater. Interfaces 12, 44007 **Sidewans** (2020) *(2020)*

Example 2.5 The START START examena de la coupe de la coup

UV-A single NW LED

EFI

18 V

 $17V$

16_V

 $15V$

 $14V$ $13V$ $12V$

Flexible macroscopic UV-A LEDs

 \rightarrow Diode-like rectifying IV curve

Materials & Interfaces, submitted

At low bias EL from VB, at high bias the dominant EL emission from MQWs at 345 nm

Other ways to eliminate dislocations Top down approach – nanoporous LEDs

- BOTTOM-UP: Nanowires
- Relax by lateral surface
- Improved light extraction
- *Increase of the emitting surface*
- *Lateral non-polar m-plane*
- **TOP DOWN: Etching structure**
- Relax by lateral surface*, after growth*
- Improved light extraction
- *Adapt thin film technology*

Selective area sublimation applied to nitride LEDs

- 1. After the growth of the LED structure, in-situ partial coverage with an SiN layer
	- SiN coverage of the surface protects the material beneath
	- Self-organization: dislocations covered later than defect-free areas
- 2. Sublimation of unprotected regions
	- UHV (MBE chamber)
	- >1000 °C
	- AlN as stopping layer

Porosified LED fabrication

- Electrical insulation of pores to avoid by SEM EBIC map short-circuiting
- Deposition of a 2 µm thick layer of parylene-C onto the top surface
- Plasma etching to uncover the p-GaN top surface
- Lithography and ITO contacting

⁴⁴ *N. Amador et al., ACS Photonics (2022), B. Damilano et al, JAP (2022)*

Nano-porous LED demonstration

- Diode-like I-V characteristic with low reverse leakage
- The EL is peaked at 2.635 eV with a FWHM of 170 meV
- Low blueshift compared to standard non-porous LEDs is Buffer -- reduction of the internal electric field in the QWs thanks to porosification
- Intensity fluctuations attributed to electrical inhomogeneities of the top contact

 2.3

 2.4

 2.5

 26

 2.7

Energy (eV)

28

 29

3.0

Summary

- Nanowires can potentially solve a number of thin film LED issues
- Variation of properties of individual NWs impacts the device properties on a macro scale (e.g. injection homogeneity)
- NW LEDs are still behind the mature thin film technology, but they have promise in niche applications
- NWs are good for mechanically flexible devices and can give new functionalities (e.g. stretchability)
- NWs have promise for UV emission
- Other approaches to nanostructuration to eliminate defects: top-down porosification

Acknowledgments

Ø *C2N research members*

N. Guan, M. Morassi, L. Mancini, N. Amador, D. Xing, H. Zhang, F. H. Julien, L. Largeau, N. Gogneau, J.-C. Harmand

Ø *Growth and characterization*

CEA Grenoble *A. Kapoor, C. Bougerol, J. Eymery, C. Durand* CRHEA Valbonne *B. Damilano, S. Vézian, B. Alloing, J. Bosch*

Ø *Structural characterizations*

CIMAP - Ensicaen *P. Ruterana*

Financial support: Labex GaNEx, ANR "Napoli", ITN "INDEED", ERC "NanoHarvest", franco-indien CEFIPRA

Flexible LEDs

Densely packed short NWs PDMS encapsulation Thin membrane manipulation **GaN Nanowires** PDMS $10 \mu m$ $11m$ Wavelength (nm) 550 525 500 475 450 425 400 375 Flexible LED demonstrated and tested under 0.3 cm 0.5 cm bending 0.4

NW top

 2.8

Energy (eV)

 2.6

m-plane

 3.2

 3.4

QWs

 3.0

 $rac{E}{9}$ 0.2

 0.0

 2.2

 2.4

Further optimization of

- Leakage
- Emission homogeneity
- Current injection

set-up, a new fabrication R and in a fill I . The R Bending of UV LEDs

Nitride nanowires

Semiconductor nano-objects with a diameter < 1µm << length

Large surface but a small footprint

Fundamental interest :

- \checkmark Study of quantum confinement in quantum discs
- \checkmark Study of quantum transport

Nano-scopic and macroscopic devices

Bottom-up approach : self-assembled and organized nanowire arrays

M. Tchernycheva et al., Nanotech. 2007 Kouno, et al., Opt. Exp. 2009 Tchernycheva et al. NanoLetters 2014

Kouno, et al., Opt. Exp. 2009

Potential benefits of nanowire-based LEDs

Efficient strain relaxation – **defect-free nanocrystals**, higher QE Growth on **low-cost substrates**

Axial LEDs Radial LEDs

Dislocation free highly mismatched active region (e.g. In-rich InGaN/GaN QDiscs to cover the **green gap**)

Increase of the emitting surface - decrease of current density – **reduction of droop** Lateral surface is non-polar – **no field**

Monolithic integration of two colors

$n-GaN$ **GaN QB** Target $\lambda = 490$ nm Target λ = 440 nm n^{++} -GaN **QB QW Target In-QW number content temperature temperature** 3 15 % 720 °C 900 °C 7 20 % 680 °C 835 °C

Core-shell wire growth with bleu and green QWs STEM-HAADF images

• Blue and green emitting QWs are integrated within the same core/shell LED structure *A. Kapoor et al, Adv. Photonics Res. (2021)*

52

Flexible two color LED

Photoluminescence from 5K to RT Electroluminescence at RT

- EL spectra present a broad emission dominated by the green color
- Blue emission around 445 nm appears at higher injection

Ag nanowire contact properties

Silver NW mesh on PDMS Silver nanowire mesh fabrication :

- Spin coating of Ag nanowires
- Baking for 20 min @ 200 \degree C

Sheet resistance after bending:

- Unbaked Ag NWs R_{\Box} = 40 Ω/\Box
- Baked Ag NWs R \sqcap = 18 Ω/\square
- ITO (no bending) $R_{\Box} = 5{\text -}100 \Omega/\Box$

Transmittance : 80-85%

Aging: 5% R_□ increase after 1 y. storage

Thermal studies: self-heating

- PDMS is a bad thermal conductor
- Device can operate for 90 min at high injection without degradation
- NWs extract the heat to metal contact

Simulation of T distribution

N. Guan, et al. Nanomaterials 10(11) 2020